

Rankine *Cycler*[™] Steam Turbine Power System Sample Lab Experiment Procedure

© Copyright Turbine Technologies, Ltd., April, 2012

Rankine Cycler[™] Lab Experiment Manual

Lab Session #1: System Overview and Component Identification

<u>Purpose</u>: To gain an understanding of the Rankine Cycler System as a whole and details of each component making up the system. This will prepare you for the next lab session in which you will operate the system.

Liquid Propane (L.P.) Cylinder Fuel used to power boiler

Steam Generation Boiler

A dual-pass, flame tube system. If system is cool, open boiler door to reveal boiler construction and flame tube layout. Also note burner fan and tube mounted in door.

Boiler Sight Gage

Indicates Water Level in Boiler Equipped with two adjustable position bezels for marking boiler water levels of interest during operation.

Steam Admission Valve Controls Steam Flow into Turbine

Steam Turbine Impulse Micro Steam Turbine driven by steam flow

Impulse Steam Turbine Wheel / Housing Detail View

Steam Turbine CAD Cutaway

- 1. Steam enters inlet port.
- 2. Steam flow forced through slits in stator ring (purple), impinging on turbine blades, spinning turbine wheel (red).
- 3. Steam exits turbine to condenser.

Four Pole AC/DC Electrical Generator Driven by turbine to generate electricity.

Condenser Tower

Unit condenses turbine waste steam back to liquid. In a full-scale plant, condensate would be reclaimed and pumped back to boiler. Ultra small scale of Rankine Cycler makes returning condensate impractical.

Data Acquisition Computer

Connects to unit's data acquisition system via USB port. Displays and captures data for operation and analysis.

In preparation for system operation and data analysis, answer the following questions:

- 1.) Liquid Propane (LP) is vaporized and used as boiler burner fuel. What is the energy content per unit volume of gaseous LP?
- 2.) If system flow meter measures gaseous LP flow at 6 liters/min to boiler burner, what is steady state energy consumption per hour?
- 3.) The boiler is shell and tube style construction. Calculate the available volume for water in the boiler given the basic construction dimensions.

Main Shell External Length = 29.85 cm Main Shell Wall Thickness = 0.198 cm End Plate Outside Diameter = 20.32 cm End Plate wall thickness = 0.318 cm Main Flame Tube Outside Diameter = 5.08 cm 17 Return Pass Flame Tubes Outside Diameter = 1.90 cm Locate the water level in the boiler if it is filled with 6000 ml of water. (Sketch location)

Will there be space unoccupied by water?

If so, how much volume?

Will any of the flame tubes not be covered by water? If so, what is the significance of this? Number?

Barometric Pressure

What is the present barometric pressure in your area?

Why would barometric pressure be important when planning to operate the Rankine Cycler?

What will be your reliable source for accurate barometric pressure readings?

Rankine Cycler[™] Lab Experiment Manual

Lab Session #2: System Operation

<u>Purpose</u>: Conduct start-up, operation, data gathering and shut down of Rankine Cycler Steam Turbine Power System.

Procedure:

Utilize Rankine CyclerTM Operators Manual and follow **Section 4.2 Expanded Normal Procedures** to perform system start-up, operation, data acquisition and shut down.

Utilize the data acquisition system to capture the operational values from startup to shut down (covered in Section 4.2.3 Data Collection).

Be sure to record the following data during the run:

Steady State Start Time: _____

Steady State Stop Time: _____

Initial Boiler Fill Amount: _____

Amount of Steady State Run Boiler Water Replaced: _____

Amount of Condensate Collected from Condenser:

Rankine Cycler[™] Lab Experiment Manual

Lab Session #3: Rankine Cycler Data Run Plots

<u>Purpose</u>: Graphically plot Rankine Cycler Run Data in preparation for system analysis and performance calculations to be conducted in Lab #4.

<u>Procedure</u>: Follow the instructions starting on page 2 of this lab procedure to plot system run data.

Plot the following, utilizing MS-Excel Spreadsheet Program:

- Fuel Flow vs. Time
- Boiler Temperature vs. Time
- Boiler Pressure vs. Time
- Turbine Inlet/Outlet Pressure vs. Time
- Turbine Inlet/Outlet Temperature vs. Time
- Generator DC Amps Output vs. Time
- Generator DC Voltage Output vs. Time
- Turbine RPM vs. Time

Print out plots and order them as listed.

Mark the steady state start and stop window on each plot.

Choose and mark an analysis point at a specific time somewhere within the steady state window. This will be the basis for your steady state, steady flow system performance analysis calculations.

From your plots (specific time mark) and data collected from system run, please record the following:

Atmospheric Pressure	
Initial Boiler Fill Amount	
Fuel Flow	
Boiler Pressure	
Boiler Temperature	
Turbine Inlet Pressure	
Turbine Inlet Temperature	
Turbine Outlet Pressure	
Turbine Outlet Temperature	
Steady State Condensate Amount	
Steady State Boiler Water Use	

DATA ACQUISITION (See Operators Manual, Section 4.2.5 for more details).

Recording and using your data properly is an important part of successfully completing the lab.

Operation of Lab Unit

From Windows, OPEN the RankineCycler Software by double-clicking on the RankineCycler 1.0 shortcut icon located on the Windows Desktop. RankineCycler 1.0 will start with the *Main Display/Control* and *Channel Configuration Window* displayed.

To start logging data, press Log Data to File Button

Turbine Technologie	s, Ltd. 11143 P	M 3/1/2011	RankineCycler	Steam Turbi	ine Power System [™]
Stop Program		Fuel Flow	Boller Pressure	Boiler Temperature	Quick Operation
End Data Log Export Schen Image	Choose or enter p	path of file to open Parkne	· 0000		Quotichedille NOTE: See Operation's Manual prior to operation. Familiarization with the Topanded Procedures: section is required.
Plot Nata Sensor Collibration	Recent Places	ame ************************************	Date modified 2/26/2011 3/07 PM 2/25/2011 11:13 A4 2/26/2011 8/31 A4 2/26/2011 2:34 PM 2/26/2011 2:34 PM	Type File 8 File 1 File 1 Configure	PRE-START Overk List 1. Is area lafe for operation 2. lock Carber Wheels 3. kayed Manter Switch Off 4. lound Resolution Off 6. Load Resolution Full 7. Operator Planet Gain
Sampling Fre wency 5 Samples wec Pressure Units (SPa) Temperature sets	Librarian	tent 1 Wrankinecycler the disk drives and handware connect	2/18/2011 10:26 AN 2/25/2011 9:55 AM	M File 1 PhilSimag	Viller Off 5. Visual Inspection 4. Onext Furt Tank 9. Onext Burner 4. Onext Bolter 5. Anext Bolter Pressure Gauge 9. Onext Sight Glass 5. Onext Sight Glass 5. Check Sight Alass
Fuel flow Units (Limin)	Temperat 200 200 200 200 200 200 200 200 200 20	a gane we as board Al Files (**)		OK Carol 30	G. Check Stram Lines h. Check Operator Panel Guain Condenser Tawer Davin Condenser Tawer Door 10. Open Stram Add Value 11. Open Stram Add Value 12. Drain Builer Completely 13. Fill Boater 253 ac 6,000 minimum has besider provided 14. Straw Fill Equipment 15. Chece Straw Add Value
1 0.49 kP Tu	20C DARA	20 C 0.00881	5 10 15 Gen	0 0,5 03 0,5 1	26. Connect Computer OAQ System USB Cable 137. Connect RankineCycler Electrical Service •

- Enter a **File Name** where indicated, then click OK and the dialogue box will close. The program will send data to this file.
- To stop saving data, click **End Data Log** button.
- To retrieve the data file;
 - 1. click on **My Computer**
 - 2. select the **C Drive**
 - 3. select Users folder
 - 4. select Public Documents
 - 5. select Rankine
 - 6. select File Name you had chosen.
- When importing the file into a spreadsheet program for analysis, you may have to look under **All Files**.

Importing Acquisition Data into MS-Excel Spreadsheet

A convenient way to analyze RankineCycler performance data is to graph the data points using MS-Excel Spreadsheet. To do this, the ASCII data captured during the lab data acquisition must be imported into Excel.

Open: MS-Excel on computer desktop Click: File Click: Open Click: C-Drive Click: Users\Public\Public Documents\Rankine Click: "All Files" under "Files of Type" Select: The File Name You Assigned in "Log Data to File" Click: Next (In Text Import Window, Step 1 of 3) Click: Next (In Text Import Window, Step 2 of 3) Click: Finish (In Text Import Window, Step 3 of 3)

Your data will now be in spreadsheet form.

28 A	licrosoft F	xcel - PDA	ιQ				SE IN LEAD	Super profil	in the second	The second second						7 🗙
1	Ele Edit	Wew [ns	sert Format	Iools Da	sta Window	v <u>H</u> elp							Туре в	question for	help 🔸	đ x
0	2		B. 🕫 🐰	Ba no.	- 🗿 Σ -	· 21 m	?) » f	inial	- 1	10 • H	<i>I</i> ∐ ≣		\$ %	(F)	• • • A	, »
	A1	-	f& Time													
	A	8	С	D	E	F	G	Ĥ	1	L	ĸ	L	М	N	0	-
1	Time .	Date	BP	TINP	T OUT P	BT	T IN T	TOUTT	DC - A	DC - Y	Fuel Flow	Turbine				-
2			PSIG	PSIG	PSIG	DC .	OC	OC	AMPS	VOLTS	LTRS/MIN	Turbine				
3	10:24:41	9/10/2004	1.16E+02	9.23E+00	4.59E+00	1.75E+02	1.13E+02	1.2DE+02	2.04E-01	6.01E+00	7.02E+00	2.01E+03				
4	10:24:45	9/10/2004	1.16E+02	9.23E+00	4.59E+00	1.75E+02	1.13E+02	1.2DE+02	2.05E-01	6.05E+00	7.01E+00	2.02E+03				
5	10:24:49	9/10/2004	1.16E+02	9.23E+00	4.69E+00	1.76E+02	1.13E+02	1.21E+02	2.06E-01	6.07E+00	7.01E+00	2.03E+03				
6	10:24:53	9/10/2004	1.16E+02	9.23E+00	4.59E+DD	1.75E+02	1.13E+02	1.21E+02	2.05E-01	6.04E+00	7.00E+00	2.03E+03				-
7	10:24:57	9/10/2004	1.16E+02	9.23E+00	4.69E+00	1.76E+02	1.13E+02	1.21E+02	2.04E-01	6.02E+00	7.01E+00	2.02E+03				_
8	10:25:01	9/10/2004	1 1.16E+02	9.23E+00	4.59E+00	1.75E+02	1.13E+02	1.21E+02	2.04E-01	5.99E+00	7.01E+00	2.01E+03				
9	10:25:05	9/10/2004	1.16E+02	9.24E+00	4.59E+00	1.75E+02	1.13E+02	1.21E+02	2.03E-01	6.00E+00	7.02E+00	2.01E+03				_
10	10:26:09	9/10/2004	1 1.16E+02	9.24E+00	4.69E +00	1.76E+02	1.13E+02	1.22E+02	2.06E-01	6.06E+00	7.01E+00	2.03E+03				
11	10:25:13	9/10/2004	1.15E+L12	9.24E+LL	4.59E +00	1.75E+U2	1.13E+U2	1.22E+U2	2.05E-01	6.03E+00	6.99E+UU	2.02E+03				
12	10:25:17	9/10/2004	1 1.15E+U2	9.24E+00	4.50E+00	1.75E+02	1.13E+02	1.22E+02	2.04E-01	6.01E+00	6.99E+00	2.02E#03				
13	10:25:21	9/10/2004	+ 1.15E+U2	9.210+00	4.56E+00	1.75E+02	1.13E+02	1.220+02	2.00E-01	5.88E+00	5.97E+00	1.97E+03				
14	10.25.23	9/10/2004	1.150+02	9.14E +00	4.00E +UU	1.75E +02	1.130 +02	1.220 +02	1.30E-01	5.01E+00	D.90E+00	1.96E+03			-	
15	10:25:29	9/10/2004	+ 1.15E+U2	9.12E+00	4.54E+00	1.75E+02	1.135+02	1.220 +02	1.96E-01	5.82E+00	P.00E+00	1.96E+03			-	
17	10.25.33	9/10/2004	1.100+02	9.110+00	4.540+00	1.76E+02	1.130+02	1.220+02	1.995-01	5.00E+00	D.99E+00 Z.00E→00	1.97 E+03				
10	10:25:37	0/10/2004	1 1 125 100	9.10E+00	4.535 +00	1.75E+02	1.13E +02	1.230 +02	1.07 = 01	5.01E+00	7.000=+00	1.000=103				
19	10:25:41	9/10/2004	1 1 16E+02	9.005.00	4.000 +00	1.766±02	1.136±02	1.230 102	1.975-01	5.01E+00	7.000-400	1.96E+03			-	
20	10.72.40	9/10/2004	1 1 155 - 00		4.120 100	1.750-102	1.100 +02	1 230 102	1.070.01		7.070-00	1.000-000				
21	10:25:40	9/10/2004	1 1 15E+02	9.00E+00	4.52E+00	1.75E+02	1.13E+02	1.23E+02	1.97E-01	5.79E+00	7.020100	1.96E+03				
22	10:25:57	9/10/200/	1 1 15E+02	9.08E+00	4.52E+00	1.75E+02	1.13E+02	1.23E+02	1.965-01	5 78E+00	7.01E+00	1.96E+03			-	
23	10.26.01	9/10/200/	1 1 15E+02	9.08E+00	451E+00	175E+02	1.13E+02	1.24E+02	1.965-01	5 79E+00	6 99E+00	1.96E+03				
24	10:25:05	9/10/200	1 1 15E+02	9.08E+00	4.51E+00	1.75E+02	1.13E+02	1.24E+02	1 97E-01	5.80E+00	5.97E+00	1.965+03			-	
25	10:26:09	9/10/2004	1 1 15E+02	9.07E+00	451E+00	1.75E+02	1.13E+02	1.24E+02	1.97E-01	5.81E+00	6.98E+00	1.97E+03			-	-
26	10:26:13	9/10/2004	4 1 15E+02	9.07E+00	4.51E+00	175E+02	1.13E+02	1.24E+02	1.98E-01	5.82E+00	Z 00E+00	1.97E+03				
27	10:26:17	9/10/2004	1.16E+02	9.07E+00	4.51E+00	1.75E+02	1.13E+02	1.24E+02	1.97E-01	5.82E+00	7.01E+00	1.97E+03				
28	10:26:21	9/10/2004	1.15E+02	9.07E+D0	4.50E+0D	1.75E+02	1.13E+02	1.24E+02	1.97E-01	5.82E+00	7.00E+00	1.97E+03			1	
29	10:26:25	9/10/2004	1.15E+02	9.07E+00	4.50E+00	1.75E+02	1.13E+02	1.25E+02	1.97E-01	5.82E+00	7.01E+00	1.97E+03				-
30	10:26:29	9/10/2004	1.15E+02	9.06E+00	4.50E+00	1.75E+02	1.13E+02	1.25E+02	1.91E-01	5.64E+00	7.01E+00	1.91E+03				
31	10:26:33	9/10/2004	1.15E+02	9.06E+00	4.50E+00	1.75E+02	1.13E+02	1.25E+02	1.78E-01	5.26E+00	7.02E+00	1.81E+03				
32	10:26:37	9/10/2004	1.16E+02	9.06E+00	4.49E+00	1.75E+02	1.12E+02	1.25E+02	1.72E-01	5.06E+00	7.02E+00	1.75E+03				
33	10:26:41	9/10/2004	1.15E+02	9.06E+00	4.49E+00	1.75E+02	1.13E+02	1.25E+02	1.69E-01	4.99E+00	7.02E+00	1.74E+03			-	-
14 4	+ HAPD	AQ/								1						
Drew = 🖒 AutoShapes = 🔨 🔌 🗇 😂 🗐 🕼 🧶 - 🖉 - 🚣 - 🚍 🚍 🍘 -																
Read	M				and a second second										NUM	
1	start	🖸 Bu	uł.1		FERAQ		1	in beta da	Maria Maria	dials at 51				Leta che	38 -	C1 PM

Graphing Data using MS-Excel Spreadsheet Graphing Function

Highlight columns of data desired for graph. For this example, the Time and BP column data will be plotted.

Chart Type: Line Chart Sub Type: Line (first one) Next

Accept data range listed by choosing: Next

+11

Rankine Cycler[™] Lab Experiment Manual

Lab Session #4: System Analysis

<u>Purpose</u>: To perform system performance calculations using First Law Energy Conservation Equation for Steady State, Steady Flow Conditions **(SSSF)**. The data for these calculations come from the information plotted and recorded in Lab #3.

<u>Procedure</u>: Analyze each component listed and perform the calculation requested.

Boiler (SSSF)

Calculate heat flow out of boiler. How does this compare with measured LP gas flow to burner? Assume: No condensate pumped back into boiler, Changes in Kinetic and Potential Energy are negligible.

Turbine / Generator (SSSF)

Find the Work rate of the Turbine and Efficiency of Electric Generator

Condenser (SSSF)

What is the total heat flow rate out of the system at the condenser? Assume changes in Potential and Kinetic Energy are negligible.

What is the Condenser Efficiency during SSSF?

Total System Efficiency (SSSF)

What is the electrical power output verses the fossil-fuel energy input?

System Mass Flow Rate (m)

Using Steam Tables, gather state data for each point of interest in the system:

1. Boiler

Measured	$P_{b} =$
Measured	$T_{b} =$
Table	V _{b =}
Table	h _{b =}
Table	U _{b =}
Table	S b =

2. Turbine Inlet

Measured	P _{Tin =}
Measured	T _{Tin =}
Table	V _{Tin =}
Table	h _{Tin =}
Table	U _{Tin =}
Table	S _{Tin =}

3. Turbine Outlet

Measured	P _{Tout} =
Measured	T _{Tout =}
Table	V _{Tout} =
Table	h _{Tout =}
Table	U _{Tout =}
Table	S _{Tout} =

4. Condenser Inlet (Use Tout Data)

Measured	Pcin =
Measured	T _{Cin =}
Table	Vcin =
Table	h _{Cin =}
Table	U _{Cin =}
Table	Scin =

5. Condenser Outlet (to atmosphere)

Measured	Pcout =
Measured	T _{Cout} =
Table	Vcout =
Table	h _{cout =}
Table	UCout =
Table	Scout =