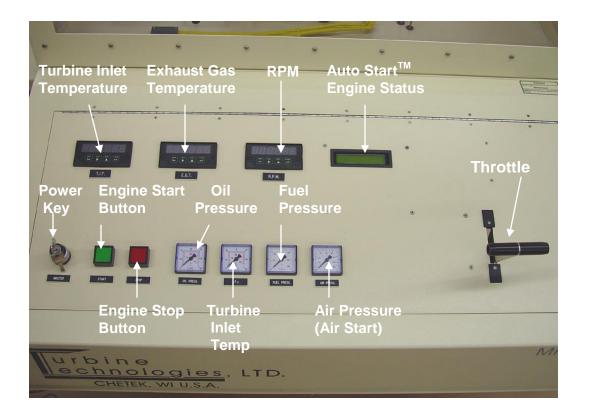
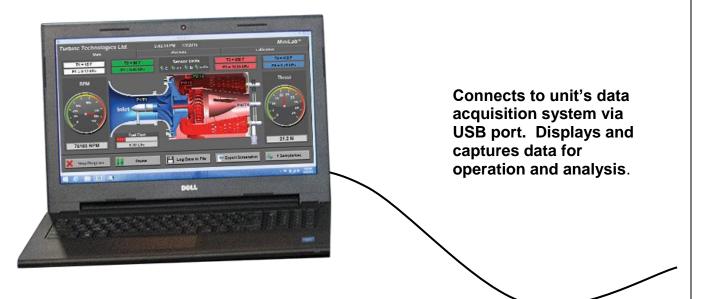

<u>Mini-Lab Gas Turbine Power System[™]</u> <u>Sample Lab Experiment Manual</u>

Lab Session #1: System Overview and Operation

<u>**Purpose</u>**: To gain an understanding of the Mini-LabTM Gas Turbine Power System as a whole and details of engine sensors and controls making up the system. This will prepare you for operation of the system.</u>


<u>Note:</u> Sample lab does not replace Mini-Lab[™] Gas Turbine Power System Operator's Manual. Please refer to manual for detailed system operational and safety instructions.


RPM Tachometer Generator: (Displayed on Panel as RPM and Data Acquisition Screen).

- P1: Compressor Inlet Pressure (Displayed on Data Acquisition Screen)
- T1: Compressor Inlet Temperature (Displayed on Data Acquisition Screen)
- P2: Compressor Exit Temperature (Displayed on Data Acquisition Screen)
- T2: Compressor Exit Temperature (Displayed on Data Acquisition Screen)
- P3: Turbine Inlet Pressure (Displayed on Panel and Data Acquisition Screen)
- T3: Turbine Inlet Temperature (Displayed on Panel as TIT and Data Acquisition Screen)
- P4: Turbine Exit Pressure (Displayed on Data Acquisition Screen)
- **T4**: Turbine Exit Temperature (Displayed on Data Acquisition Screen)
- Fuel Pressure: (Displayed on Panel)

Mini-Lab[™] Gas Turbine Power System Control Panel

Data Acquisition Computer

Turbine Technologies, Ltd.

2

In preparation for system operation and data analysis, please answer the following questions:

Determine the fuel you are using to power your system.

What is the energy content per unit volume of fuel?

What is the fuel's density per unit volume?

Barometric Pressure

What is the present barometric pressure in your area?

Why would barometric pressure be important when planning to operate the Gas Turbine System?

What will be your reliable source for accurate barometric pressure readings?

System Operation

<u>Purpose</u>: Conduct pre-start, start-up, operation, data gathering and shut down of Mini-LabTM Gas Turbine Power System.

Procedure:

Utilize Mini-Lab[™] Operators Manual and follow Section 4.2 Expanded Normal **Procedures** to perform system pre-start, start-up, operation, data acquisition and shut down.

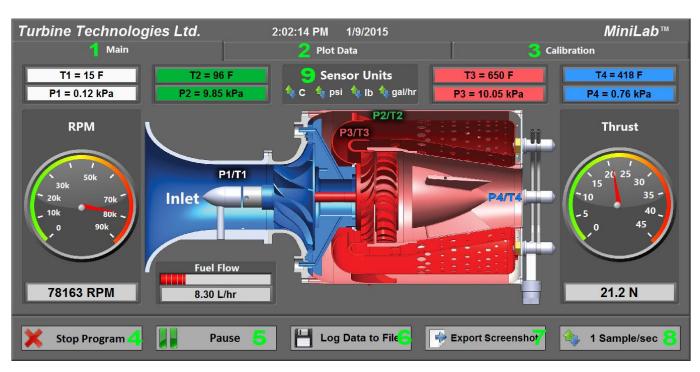
Utilize the data acquisition system to capture the operational values from startup to shut down (covered in Section 4.2.3 Data Collection and <u>also covered in</u> <u>detail on the next page of this sample lab</u>).

DATA COLLECTION

Recording and using your data properly is an important part of successfully completing the lab.

NOTE: The following steps assume the use of the standard MiniLab Software and default settings as supplied with the MiniLab. Use of non-default setting or other software may necessitate alternative methods or procedures for data collection. Consult the LabView/National Instruments software specific information as required.

From Windows, OPEN the MiniLab Software by doubleclicking on the MiniLab 1.2 shortcut icon located on the Windows Desktop. MiniLab 1.2 will start with the *Main Display/Control* and *Channel Configuration Window* displayed.


MiniLab Launch Icon

NOTE: The computer must be connected to the MiniLab USB port prior to opening the MiniLab software.

The MiniLab configuration software is dependent upon the specific DAQ Module serial number as installed in the MiniLab and will not function properly if the DAQ Module cannot be found. If this was done incorrectly, exit the program, attach the USB cable and start over. When the software is launched, a NI-MAX (Measurement & Automation Explorer) hardware configuration automatically sets the channels and scales of the **NI DAQ 6218** device.

TO PERFORM THE FOLLOWING FUNCTIONS:

- Virtual Instrument Panel Software Controls overview are on page 5
- Logging Data to File is shown on Page 6
- Displaying Plot Feature is shown on Page 6

Software Controls Overview

- 1. Click Main tab for Data Acquisition
- 2. Click Plot Data tab to plot any number of sensors in real-time
- 3. Click Calibration tab to save a calibration offset to any of the sensors
- 4. Click Stop Program to stop the VI
- 5. Click Pause to pause the VI and data logging (click Continue to resume the VI after pausing)
- 6. Click Log Data to File to save a text document of desired data
- 7. Click Export Screenshot to save an image file of the current VI screen
- 8. Click to change the Sampling Rate of the VI
- 9. Click on the arrows to change Sensor Units

Figure 4.5A: Logging Data To File												
Turbine Technologies	Ltd.	1:06:52 PM 1/19/201	5			MiniLab™						
Main		Plot Data		Calibration								
T1 = 463 C	T2 - 464 C	Choose or enter path of file to re	T3 - 464 C		4 = -140283505885117							
P1 = -0.00 psig	🗲 🌛 🔻 🕇 📕 « Us	ers → Turbine Technologies →	v 🖒 Search	Turbine Technologies 🛛 🔎	P4	= -0.50 psig						
	Organize 🔻 New folde	r		:= • 🔟 🔞		_						
RPM	🔯 iCloud Drive (Ma ^	Name	Date modified	Type Siz	e i	Thrust						
	🝊 OneDrive) Documents	8/11/2014 1:44 PM	File folder								
50k 30k	🍓 Homegroup				1							
20k 70k r	PC				10	35 -						
_ 10k 80k ~	Documents				- 5	40 _						
o 90k	🚺 Downloads				e	45						
	Movies											
	Music											
	Pictures Local Disk (C:)	٢		_	×							
		me: MiniLab Factory Run	✓ All File	s (*.*) V								
183 RPM	riie na	Minicab Factory Run			-14	5001.2 lbs						
				OK Cancel								
			_									
🗙 Stop Program	Pause	End Data Lo	og 📑 🖗 I	Export Screensh	ot 🐴 1	Sample/sec						

To log data to a file for analysis, click on the "**Log Data to File**" button and a new window will appear. Enter a file name and choose the location to save the file. Click "**OK**" to begin logging data. Click "**End Data Log**" to stop logging data.

To plot data points, use the check boxes to select the desired sensor(s) for the data plot. You can change many different features of the plot with the Plot Controls box.

Figure 4.5B: Plot Data

Mini-Lab[™] Gas Turbine Lab Power System Experiment Manual Lab Session #2: Mini-Lab[™] Data Run Plots

<u>Purpose</u>: Graphically plot Mini-LabTM Gas Turbine Run Data in preparation for system analysis and performance calculations.

<u>Procedure</u>: Follow the instructions starting on the following pages of this lab session to plot system run data.

Plot the following, utilizing MS-Excel Spreadsheet Program:

- Compressor Inlet/Outlet Pressure vs. Time
- Compressor Inlet/Outlet Temperature vs. Time
- Turbine Inlet/Outlet Pressure vs. Time
- Turbine Inlet/Outlet Temperature vs. Time
- Exhaust Gas Temperature (EGT) vs. Time
- Fuel Flow vs. Time
- RPM vs. Time
- Thrust vs. Time
- Fuel Flow and Thrust vs. Time (on one plot)

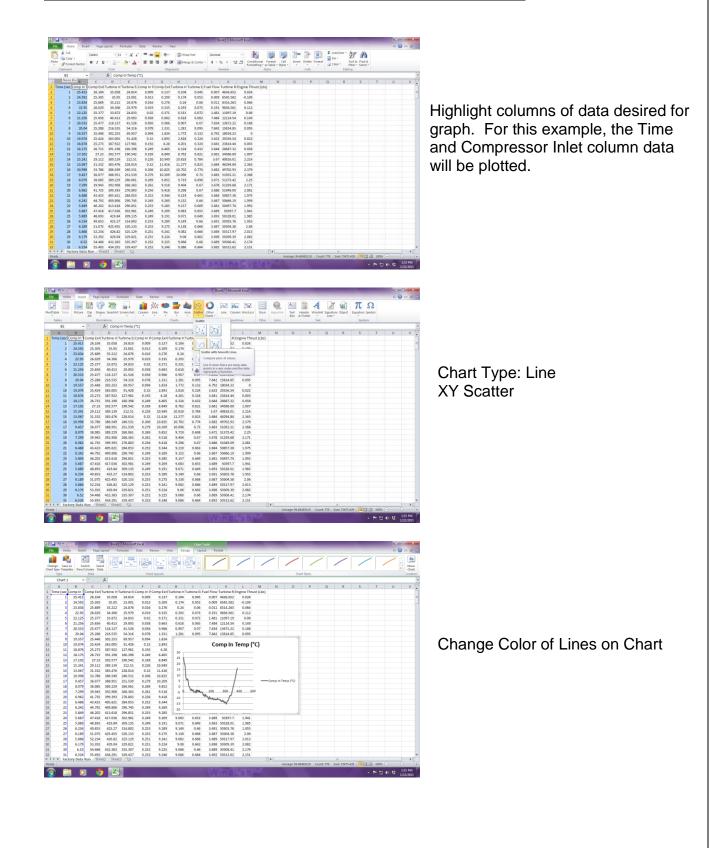
Print out plots and order them as listed.

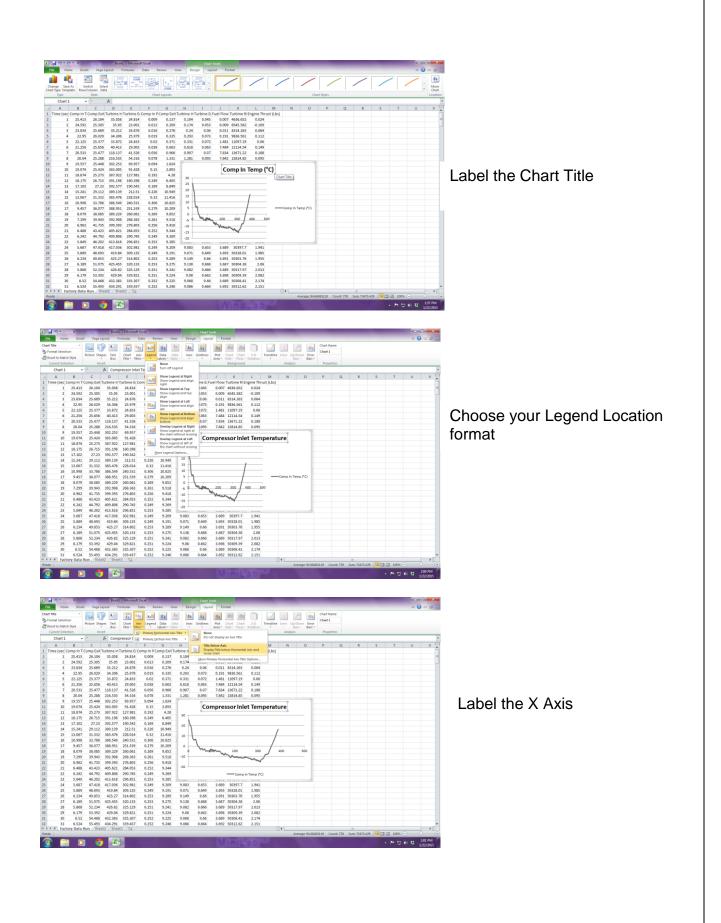
Choose and mark an <u>analysis point</u> on each plot for the same time point. For this exercise, pick a spot where engine RPM is at or near its peak during the data run. This will be the basis for system performance analysis calculations.

From your plots (specific time mark) and data collected from system run, please record the following:

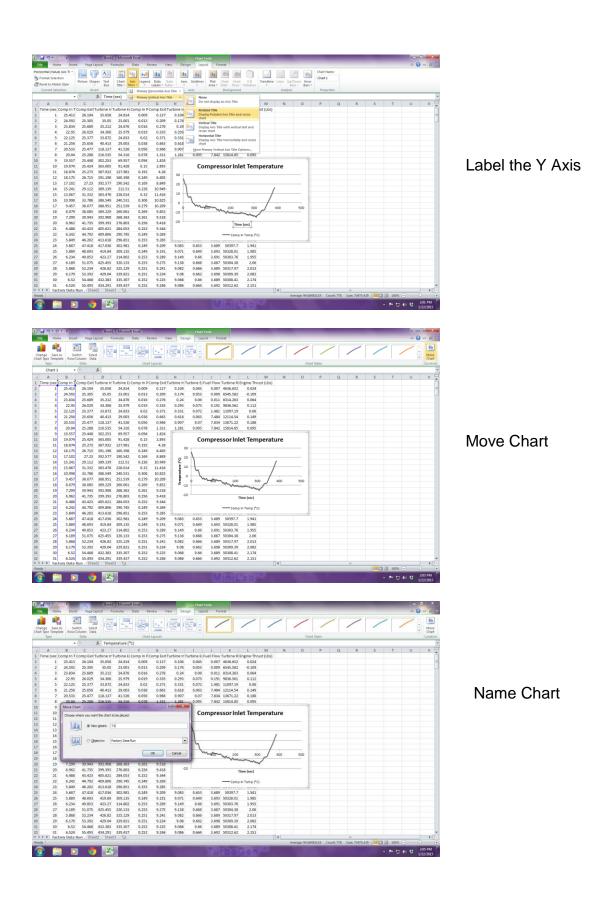
- Date of Run: ______
- Time: _____
- Atmospheric Pressure: ______
- Compressor Inlet Pressure: ______
- Compressor Exit Pressure: ______
- Turbine Inlet Pressure: ______
- Turbine Exit Pressure: _______
- Fuel Flow: ______
- RPM:_____
- Thrust: _____
- Compressor Inlet Temperature: ______
- Compressor Exit Temperature: ______
- Turbine Inlet Temperature: ______
- Turbine Exit Temperature: ______

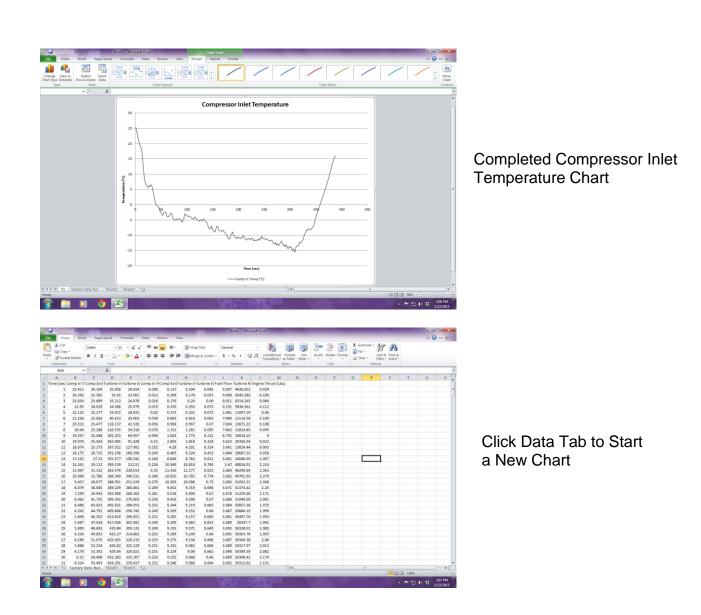
Importing Acquisition Data into MS-Excel Spreadsheet


A convenient way to analyze MiniLab performance data is to graph the data points using MS-Excel Spreadsheet. To do this, the ASCII data captured during the lab data acquisition must be imported into Excel.


Open: Double-Click the data file saved from the VI Click: Open With and select Microsoft Excel

Your data will now be in spreadsheet form in MS Excel.


		× -								Bo	ok1 - Microsoft	Excel							- 6	<u>-</u>
File	Home	Inser	t Page L	ayout F	ormulas E	Data Rei	view Vie	w											۵ 🕜	- 6
ĥ	🔏 Cut		Calibri	* 11	· A A	= =	■ ≫	🛱 Wrap	Text	General	¥	45		-	¥ 📖	Σ AutoSur	Zr un			
ste	🛷 Forma	t Painter	BIU	*	<u>⇒</u> - A -		 # #	Merg	je & Center 🕤	\$ - 9	6 * ^{⊕.0} .00 →.0	Conditional F Formatting * as		Insert	Delete Forma	Clear 🔻	Sort & Find & Filter * Select *			
	Clipboard	5		Font			Alignr	nent		N	umber G		rles		Cells		Editing			
	012	*	(*	f_{x}																
	Α	В	С	D	E	F	G	н	1	J	K	L M	N	0	Р	Q	R S	Т	U	v
Ti	me (sec C	omp In T	Comp Exit	Turbine In	Turbine E C	omp In P C	omp Exit T	urbine In T	Furbine Ex Fu	el Flow	Turbine RIEng	ne Thrust (Lbs)								
	1	25.413	26.104	35.058	24.814	0.009	0.137	0.104	0.045	0.007	4636.652	0.024								
	2	24.592	25.305	35.05	23.001	0.013	0.209	0.174	0.053	0.009	6545.582	0.109								
	3	23.834	25.689	35.212	24.876	0.016	0.276	0.24	0.06			0.064								
	4	22.95	26.029	34.306	25.979	0.019	0.335	0.293	0.073			0.112								
	5	22.125	25.377	33.872	24.833	0.02	0.371	0.331	0.072		11097.19	0.06								
	6	21.256	25.656	40.413	29.003	0.038	0.663	0.618	0.063			0.149								
	7	20.533	25.477	118.137	41.526	0.056	0.966	0.907	0.07			0.188								
	8	20.04	25.288	216.535	54.316	0.078	1.331	1.281	0.095			0.095								
	9	19.557	25.448	302.253	69.957	0.094	1.824	1.772	0.132		18034.23	0								
	10 11	19.074 18.874	25.424 25.273	363.005 387.922	91.428 127.981	0.15	2.893 4.28	2.818 4.201	0.224			0.022								
	11	18.175	25.275	391.198	160.398	0.192	6.405	6.324	0.324			0.005								
	13	17.102	27.23	392.577	190.542	0.169	8.849	8.762	0.621		34586.69	1.007								
	14	15.241	29.112	389.139	212.51	0.226	10.949	10.818	0.784			2.214								
	15	13.067	31.332	383,476	228.014	0.32	11.416	11.277	0.823			2.363								
	16	10.998	33.786	386.549	240.531	0.306	10.825	10.702	0.774		49702.93	2.379								
	17	9.457	36.077	388.951	251.539	0.279	10.209	10.096	0.73			2.368								
	18	8.079	38.085	389.229	260.061	0.269	9.852	9.719	0.698	3.671	51373.42	2.25								
	19	7.299	39.943	392.908	268.363	0.261	9.518	9.404	0.67	3.678	51259.68	2.171								
	20	6.962	41.735	399.393	276.803	0.256	9.418	9.298	0.67	3.686	51049.09	2.081								
	21	6.488	43.423	405.621	284.053	0.252	9.344	9.219	0.663	3.684	50857.38	1.975								
	22	6.242	44.792	409.806	290.745	0.249	9.269	9.152	0.66	3.687	50666.19	1.999								
	23	5.849	46.202	413.618	296.851	0.253	9.285	9.157	0.669	3.681	50497.74	1.992								
	24	5.687	47.418	417.036	302.981	0.249	9.209	9.083	0.653	3.689		1.941								
	25	5.889	48.693	419.84	309.135	0.249	9.191	9.071	0.649			1.985								
	26	6.234	49.853	423.27	314.802	0.253	9.289	9.149	0.66			1.955								
	27	6.189	51.075	425.455	320.133	0.253	9.275	9.138	0.668		50304.38	2.06								
	28	5.868	52.234	426.82	325.129	0.251	9.241	9.082	0.666			2.013								
	29	6.179	53.392	429.04	329.821	0.251	9.224	9.08	0.662			2.082								
	30	6.52	54.468	432.383	335.307	0.252	9.225	9.068	0.66			2.174								
•	31 Eacto	6.524 prv Data I	55.493 Run Shee	434.291	339.437	0.252	9.246	9.086	0.664	3.692	50312.62	2.151	14						_	
dy	ucti													_				1 100% (-)	


Graphing Data using MS-Excel Spreadsheet Graphing Function

Copyright January 2018

Mini-Lab[™] Gas Turbine Lab Experiment Manual Lab Session #3: System Analysis

<u>Purpose</u>: To perform system performance calculations using First Law Energy Conservation Equation for Steady State, Steady Flow Conditions **(SSSF)**. The data for these calculations comes from the information plotted and recorded in the previous lab session

Procedure: Perform requested analysis and calculations.

Q_{add} Wk_{cycle} Combustor $\mathsf{Wk}_{\mathsf{comp}}$ Turbine Compressor Q VANE GUIDE RING AXIAL FLOW TURBINE TRANSITION LINER THRUST NOZZLE DIFFUSER FUEL ATOMIZATION CENTRIFUGAL FLOW NOZZLE COMPRESSOR INLET FUEL CONTROLLER ANNULAR COMBUSTOR

Schematic of Brayton Cycle for Gas Turbine and Cut Away of SR-30 Engine

For the analysis point chosen in Lab Session #2, find the Specific Enthalpy at each Cycle Point from page 7(using air tables).

- 1.) For the Compression Stage, Find Specific Work Done by the Compressor (1-2).
- 2.) For Combustion Stage, Find Specific Energy Added by the Fuel (2-3).
- 3.) For the Turbine Expansion, Find the Specific Work of the Turbine (3-4).

4.) Find the Specific Work done by the Cycle .

5. Find the Thermodynamic Efficiency of the Cycle

Mini-Lab[™] Gas Turbine Power System Lab Experiment Manual Lab Session #4: Performance Analysis

<u>Purpose</u>: To perform system performance calculations of the engine at the compressor inlet and nozzle exit. The data for these calculations comes from the information recorded and plotted in a previous lab session

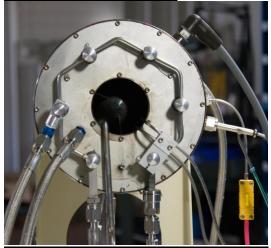
<u>Procedure</u>: Perform requested analysis and calculations at this location and operational point.

COMPRESSOR INLET

What is the **<u>Pitot-Static Recorded Pressure</u>** (Compressor Inlet Pressure) and **<u>Air Density</u>** at this location and operating condition?

At pitot static location in engine intake bell, cross-sectional is:

Calculate the gas (air) <u>Velocity</u> into compressor at this operating condition.


Calculate the <u>Volumetric Flow Rate</u> of air into compressor at this operating condition.

Calculate <u>Mass Flow Rate of air into compressor at this operating condition.</u>

Calculate the <u>Thrust</u> generated at this location and operating condition.

Calculate the <u>Mach Number</u> of the flow at this location and operating condition.

THRUST NOZZLE EXIT

What is the **<u>Pitot Ram Air Recorded Pressure</u>** (Exhaust Gas Pressure) and <u>Air</u> <u>**Density**</u> at this location and operating condition?

Pitot Ram Air Recorded Pressure = 11.2 kPa

Calculate the gas (air) <u>Velocity</u> exiting the nozzle at this operating condition.

Calculate the <u>Volumetric Flow Rate</u> of air exiting the nozzle at this operating condition. Nozzle cross-section area = $0.0025m^2$

Calculate Mass Flow Rate of air exiting the nozzle at this operating condition.

Calculate the **<u>Thrust</u>** generated at this location and operating condition.

Calculate the <u>Mach Number</u> of the flow at this location and operating condition.

Questions:

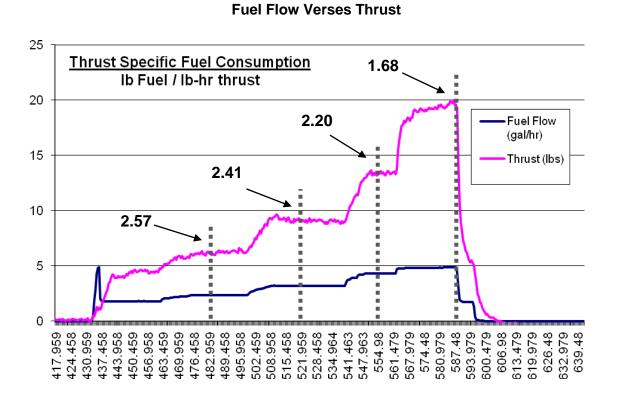
Why is the calculated value of Thrust using pitot tube reading different than what is captured by system's load cell thrust measurment?

Does temperature of exhaust gases affect Mach Number?

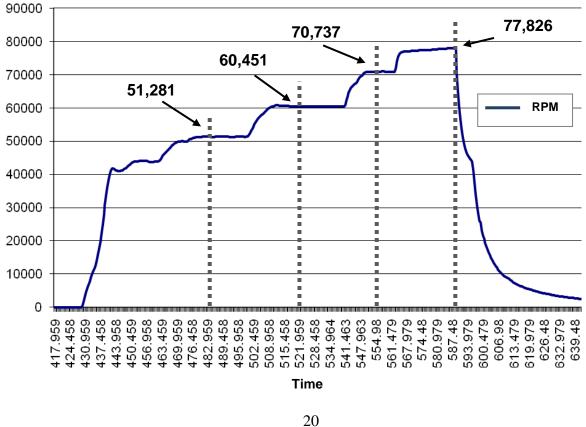
Mini-Lab[™] Gas Turbine Lab Experiment Manual Lab Session #5: Thrust Specific Fuel Consumption Analysis

<u>Purpose</u>: To determine the optimal operational setting for the SR-30 Gas Turbine by analyzing the fuel consumption rate verses the amount of thrust generated. The data for these calculations comes from the information recorded and plotted in a previous lab session

-Procedure: Perform requested analysis and calculations that follow.


- 1. Using your operational run data plots, pull up and print the following graphs:
 - Fuel Flow and Thrust (on one graph) plotted over Time.
 - Engine RPM (on another graph) plotted over Time.
- 2. Pick 4 RPM settings (from low to highest operating RPM) and mark them on Engine RPM sheet. Write the actual RPM value at each mark on the graph.
- 3. Transfer the time positions of the Engine RPM Graph to the Fuel Flow and Thrust Graph. Record the values of Fuel Flow and Thrust at each time position.
- 4. Calculate Thrust Specific Fuel Consumption (T.S.F.C.) at each RPM setting chosen.

T.S.F.C. = <u>Weight of Fuel Burned / Hour</u> Thrust Force


Question: Based on your findings, at what power setting does the SR-30 Gas Turbine offer: The best T.S.F.C.? The worst T.S.F.C.?

Is this what you expected?

19

Engine RPM

Mini-Lab[™] Gas Turbine Lab Experiment Manual Lab Session #6: Jet Engine Propulsive Efficiency Analysis

<u>Purpose</u>: To gain an understanding of the propulsive efficiency of a turbo-jet engine. The data for these calculations comes from the information recorded and plotted in a previous lab session

Procedure: Perform requested analysis and calculations that follow.

We have calculated our engine thrust when the unit is standing still in the lab. Now, let's turn our Mini-LabTM Gas Turbine System into a go-kart (since your professor won't really let you do this, let's just imagine it). Let's assume we've replaced the casters with a remote steering wheel system and we took the unit out to an airport runway.

1.) If we fired the engine at the same maximum power setting we used in the lab and got the unit rolling 50 miles/hour (80.5 km/hr) down the runway, what is the propulsive efficiency of the unit?

2.) Since the unit is boxy, with a great deal of flat plate area causing drag, someone suggested attaching a sleek nose cone to the front of the vehicle. With the new nose cone, it was sent down the runway at the same power setting, reaching 100 miles/hour (161 km/hour). What is the new propulsive efficiency

3.) Someone suggested adding a sleek tail cone to the set-up and when it was sent down the runway in this configuration at the same power setting, it reached 150 miles/hour (241.5 km/hour). What is the new propulsive efficiency?

4.) Finally, a pair of swept wings and tail was added and the unit actually lifted off and flew at 200 miles/ hour (322 km/hour) in ground affect above the runway. What was the new propulsive efficiency?

5.) After it was all over the unit was returned to its original configuration and returned to the lab. It was fired up again and run at the same power setting that was used on the runway. What is the propulsive efficiency now?

Questions:

Knowing what you have learned about propulsive efficiency, which would be a better use of the same turbo-jet engine; putting it on an ultralight airplane with a maximum airframe speed of 80 miles/hour (129 km/hr) or one on an observation drone that cruises at 300 (483 km/hr) miles per hour?

What is the difference in propulsive efficiency between the two aircraft?