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Abstract

Nowadays, turbine engine tests are processed us-
ing an open loop, i.e. the measurements are ver-
ified and treated a posteriori, sometimes weeks or
months after the end of the test. The purpose of
the present project is to develop a new method-
ology which enables real time detection of faulty
measurements and the suppression of the source of
these faults during the test.

The validation of the measurements is achieved by
a “robust” parameter identification [1]. Such a
method is called robust in the sense that it can
cope with 20 to 30% of faulty measurements. The
robustness is insured by a distribution of the mea-
surement noise, as introduced by Huber [7, 8], that
takes into account the possibility of faults.

The purpose of a parameter identification is to find
the set of parameters which has most likely gen-
erated the measurements observed on the process.
This leads to an optimisation problem that has to
be solved for the parameters. The measurements
are linked to the parameters through a non-linear
model, leading to a large system of equations for
modern jet engines. If no physical model of the pro-
cess can be made available or if this model is too
complex to allow real time validation, automatic
learning methods may provide a solution:

e cither a mathematical representation is gener-
ated, directly based on the measurements (on-
line learning),

e or a database is first generated, based on the
existing (but expensive) physical model, the
database being subsequently used to build a
statistical model (off-line learning).
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Neural networks seem to be very suitable for mod-
eling the behavior of turbojets, avoiding the reso-
lution of a time-consuming non-linear system. In
this paper neural networks are tested to generate a
mathematical representation of a single flow, single
spool and variable geometry nozzle turbojet, from a
data base of “measurements” generated by a phys-
ical model of the engine. Only the off-line learning
approach is considered.

Statement of the problem

The problem of fault identification can be stated as
follows: given a process (i.e. a turbojet, a chem-
ical process, ...) on which several measurements
are taken, one would like to verify whether some
of these measurements are faulty and whether the
process works correctly.

A process can be described by a set of indepen-
dent parameters 6 (for our turbojet, the inlet en-
gine temperature and pressure, the fuel flow, the
area of the exhaust nozzle, ...). The exact value
of these parameters # is not available, but may be
estimated using a set of measurements Y and any
model of the process. This is called a parameter
identification: a set # is sought that maximizes the
probability of observing the measurements Y.

A robust validation procedure has been developed
by the authors and is described in [1]. This pro-
cedure has been tested with a physical model of
the engine. The results demonstrated that multiple
sensor faults can be detected. It is now proposed
to investigate how a model can be built using au-
tomatic learning methods such as artificial neural
networks (ANN), and how this mathematical rep-
resentation can be matched to the robust validation
procedure.



Model development

A physical model of a jet-engine is based on mass,
momentum and energy balances, that have to be
satisfied. However such a model, as good as it is,
must be fitted to the available measured data to
be sufficiently accurate. Once this calibration has
been performed the model can be used to predict
the performance of the engine.

The development of a physical model is usually a
complex and time consuming task because it im-
plies to gather a large amount of information from
different sections of the engine (compressor, tur-
bine, combustion chamber, ...). Moreover, such a
model will result in a high index non-linear system
of equations which may be difficult to solve.

These reasons lead to the idea of testing the ability
of a neural network to replace the physical model.
Recent data acquisition systems make it possible to
store a huge amount of measurements from an en-
gine. Automatic learning methods allow to make
use of these data to train a mathematical repre-
sentation of the engine, i.e. to infer the mapping
between the inputs # and the output data Y.

Neural Network Structure

An artificial neural network consists of a pool
of simple processing units which communicate by
sending signals to each other over a large number
of weighted connections [14].

Following this definition, an artificial neural net-
work (ANN) can be considered as a non-linear re-
gression technique. The mapping of the network
is determined by its structure (number of units
and layers) and a set of parameters (weights). A
very short introduction to neural networks is pro-
posed hereafter. A more complete description can
be found in [12], [13], [14] and [2].

The structure of a neural network can be summa-
rized as follows: neurons (fig. 1) are the basic
processing units of the network. Each unit per-
forms a relatively simple job: receive input a; from
neighbours or external sources and from this de-
liver an output z; signal which is propagated to
other units. Neurons are also characterized by an
activation function g

(1)

zi = g(a;)

In most cases, it is assumed that each neuron pro-

Figure 1: Single neuron
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vides an additive contribution to the input of its
neighbours with which it is connected. In other
words, the total input for unit ¢ is simply the
weighted sum of the separate outputs from each
of the connected units plus an offset term (fig. 1).

a; = Zwijzj +6; (2)
J

The network topology considered here is the so-
called feed-forward, where the data flows from in-
put to output neurons and only this way. The data
processing can extend over multiple layers of neu-
rons (fig. 3).

Let:

e O for Kk = 1...p be a set of parameters,

e 0 for k = 1...p be the set of input parameters
of the model,

e Y; for j = 1...c be a set of data measured on
the process,

° YJ for j = 1...c be a set of measurements pre-
dicted by a model of the process for a given

6.
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Figure 3: Artificial Neural Network scheme



Neural Network training

Training a network is determining the mapping be-
tween the inputs and the outputs. Provided the
structure of the network, the training phase reduces
to the determination of the weights characterizing
the connections between neurons, on the basis of a
collection of available data.

The database being B(#',Y!) and containing n
items (an item is the set of both input and out-
put data), we are looking for the underlying gener-
ator of the data. In other words, training a neural
network is finding the weights which maximize the
probability P(0,Y) of observing Y together with 6:

3)
(4)

L = P(0,Y)=P(|0) x P(9)
= [P x P
l

Defining the error function E:

E = —InL (5)
= =Y Pyl -3 P@) (6
! L/—/

Minimizing P corresponds to the minimization of:
E=-) Py (7)
1

A measurement Y; can be expressed as a function
of the predicted measurement Y;(6;w):

Y; = Y;j(0;w) + ¢, (8)
where ¢; is the measurement noise. Therefore, if

gaussian noise is assumed, the error function is (for
details see [6]):

and the network weights w;; are determined to min-
imize this error function.

Another aspect that has to be considered is the
number of neurons and the number of layers in
the network. The difficulty of this step should
not be underestimated. Enough neurons may be
introduced to achieve sufficient accuracy but too
many neurons leads to over-fitting problems. Over-
fitting is a generic problem encountered in auto-
matic learning. It generally appears when the

model extracted is too complex with respect to the
information provided in the learning set, resulting
in a mapping with dramatic oscillations between
the measured data.

The procedure followed in this paper is to increase
the number of neurons and the number of hidden
layers until an optimal structure has been reached.
The optimal structure is the one which provides the
best results for data not belonging to the learning
set, providing the best generalization. One way to
achieve such a verification is to split the database in
two sets: the learning set which is used to train the
network and the test set which is used to test the
network on unseen data. The number of neurons
and layers is increased until a minimum on the test
set error is observed. A complete description of this
technique can be found in [2].

Other optimization methods are available based on
a bayesian inference of regularization parameters
to determine the optimal geometry (see [12] and
[13]). Even though these approaches are supposed
to perform better, they require more coding work
and therefore will not be considered here.

test set

learning set

optimal network complexity

complexity

Figure 4: Neural Network Generalization

Robust Validation Procedure

Now that a mathematical representation of the en-
gine is available, we will concentrate on another as-
pect of the measurement validation, namely the de-
velopment of an efficient test to compare the mea-
surements performed on the engine to the outputs
of its model.

This step is performed through the determination
of the input parameters (6).

According to the principle of maximum likelihood
the probability P(Y, é) is maximized by finding the
parameters leading to the most likely solution. As
for the training of the neural network, this is done



by minimizing an error function. A usual approach
is to consider that measurement noise is gaussian,
leading to the least square method which gives very
poor results when measurements faults are encoun-
tered.

Some improvements are brought by using robust es-
timators. An efficient approach has been proposed
by Huber and later Poljak & Tsypkin, based on the
a priori information contained in the noise distri-
bution, and has led to a new error function. We
will only mention here the expression of this func-
tion. More details can be found in [1], [7], [8] and
[9].

The error function is:

E = Y Ej) where (10)
j=1
€2
—1n(k1)+T‘J2 if |e;] < A
J
Ej(e;) = (11)
—ln(k2)+% if ;] > A,

where k1, ko, k3 and A are positive constants func-
tions of o and satisfying the continuity of F(e) and
E'(e).

This distribution is very suitable for modeling mea-
surement noise where the variance is limited for
valid measurements but may take any value in the
case of faulty ones.

Parameter observability and
measurement criticity

Before any parameter identification, it is worth it

1. to verify that the number and the type of mea-
surements allow the determination of the pa-
rameters (observability of the parameters),

2. to investigate how each measurement con-
tributes to the estimation of these parameters
(criticity of the measurements).

Let the function f represents the non linear model
of the process

Y = f(0) (12)
and J the jacobian of the system
Y, - .
Jjk = gf = AY = JA (13)

O

The parameters are observable if the relation (13)
can be inverted, i.e. the rank of J must be equal
to the number of parameters p. When the model
is inferred from the measurements, it is clear that
input parameters can always be determined by the
set of output parameters.

Besides, a measurement is said to be critical if re-
moving this measurement reduces the rank of J by
1, i.e. the line of J corresponding to a critical mea-
surement is linearly independent of the other lines
(see [4, 5]). The criticity of a measurement is af-
fected by the standard deviation on the latter. By
specifying a standard deviation on each measure-
ment and on each parameter (through a priori in-
formation), constraints are added to the identifica-
tion problem.

A criticity of 1 means that the corresponding mea-
surement is used without any redundancy to de-
termine one parameter and therefore this measure-
ment cannot be validated. On the contrary the less
the criticity is, the more the corresponding mea-
surement can be validated. The evaluation of the
criticities is mandatory for the validation procedure
and is performed through a simple computation of
the influence matrix G defined as

AY = GAY (14)

Assuming a quadratic form of the objective func-
tion in the vicinity of the optimum () the matrix
G is computed by:

G=JJ sy tyrst (15)

where the (¢ x ¢) diagonal matrix ¥ is defined as

12
Yij=1 %
17 { 0

The diagonal terms of G reflect the criticity of each
measurement Y;. An interesting property of this
influence matrix is that the trace of G is equal to
the number of parameters p (see [11] and [12]).

if [e;] < A

16
if |6j| > Aj ( )

trace (G) = p (17)

The standard deviation J; associated with vali-

dated values }é depends on the influence of mea-
sured values on identified values and on standard
deviations of each measurements by:

Z (Gjio'i)Q

i=1

(18)




Information on the accuracy of identified values is
of great interest for testing whether the accuracy of
the results is compatible with their utilization (pre-
dictive maintenance, engine fault detection, ...).

Application

It is proposed to test the ability of a neural network
to achieve a real time robust validation on unseen
measurements. This test implies the following op-
erations:

e generate a database with a physical model
(1000 items),

e add gaussian noise on each measurement,

e split up the database into a learning set (700
items) and a test set (300 items). The learn-
ing set is used to train the network and the
test set is used to test the generalization of the
network,

e use a robust estimator based on (10) with the
ANN model to validate the measurements.

The results are also compared to those obtained by
a least squares approach in order to highlight the
need of a robust estimator.

The measurements considered are summarized on
table 1. Input parameters are T2, P2, T4, AS.

w
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Figure 5: Identification applied to SR30

It is important to mention that the procedure is
made up of two distinctive identifications:

e the first one, which is performed off-line as a
preliminary phase, is the identification of the

network weights (w) according to the database
and minimizing (9),

e the second one is the measurement validation
of one sample at a time by identifying the in-
put parameters 6 of the network. This step can
be performed on-line provided that the valida-
tion procedure is fast enough, namely the min-
imization of 10.

Three different situations will be considered in this
test case:

1. no sensor faults,

2. a large sensor fault on T, the turbine entry
temperature,

3. 4 sensor faults - in order to test the robustness
of the method.

Results

The neural network has been trained using the
database, and the number of units and layers
has been increased until an optimal structure was
found. This structure is made of two hidden layers
with 10 neurons each, meaning 270 weights to be
determined. The accuracy of the network is close to
the measurements accuracy, and it is assumed that
noise introduced by the network does not spoil the
results. This assumption will be confirmed during
the tests.

When no engine faults and no sensor faults oc-
cur, there are 14 measurements, 4 parameters and
14 — 4 = 10 degrees of freedom. A measurement is
rejected if |Y; — f/,| > 30;, corresponding to a confi-
dence interval of 99% (the risk of concluding falsely
that Y; is faulty is 1%).

Results for the 3 situations are proposed in table 2.
For the sake of simplicity, only reduced variables are
mentioned, 3 types of reduced variables are used:

Y -,
XANN = - T CANN - eural network used
o
Y -,
Xmod = - ~mod physical model used
Y — Y;‘/rue
Xtrue = ————  true value
o

From table 2 it can be seen that the neural net-
work identifies clearly the sensor faults and does
not introduce any false alarm. Values identified by



Measurement | Unit | standard deviation | Description

T2 K 0,5K inlet temperature

P2 bar 50Pa inlet pressure

T4 K 1K turbine inlet temperature
A8 m? 1.107°m? nozzle area

T3 K 1K compressor outlet temperature
P3 bar 200Pa compressor outlet pressure
P4 bar 200Pa turbine inlet pressure

TS K 1K turbine outlet temperature
P5 bar 100Pa turbine outlet pressure

T8 K 1K nozzle outlet temperature
P8 bar 100Pa nozzle outlet pressure

N RPM | 100RPM rotational speed

Dfuel g/s 0,5g/s fuel flow

D2 kg/s | 3.107%kg/s air flow

Table 1: Measurements available on the SR30 engine

the network (Y') are not exactly the same as those
identified by the physical model but the difference
remains within the noise. The identified input pa-
rameters (é) are correctly estimated compared to
the real value (generated by the physical model)
and sensor fault isolation remains very effective. In-
deed in this particular case, the physical model is
the true generator of the data and therefore allows
an easier identification. Generally, a physical model
has also to be fitted to a training set of data and
the difference between the physical model and the
mathematical representation (the network) would
disappear.

In [1], a physical model has been used together with
a robust validation strategy. Several test cases have
shown the numerous advantages of such a method
on the more common Least Squares Method. Here
we see that a neural network instead of a physical
model does not introduce any significant decrease
in sensor fault isolation efficiency.

Table 3 summarizes the results obtained with a
usual least square identification. It means that the
input parameters are determined by minimizing the
sum of square error (SSE). Test case 1 shows that
the robust approach reduces to a least square ap-
proach when no fault occurs. Test case 3 shows
that the least square method only identifies a fault
in the sample but cannot locate it.

Comparing these results to those of table 2, it is
obvious that robust identification performs much
better, identifying the parameters, isolating the
fault quite clearly and rejecting only faulty mea-
surements (no false alarm).

The analysis of criticity and standard deviation

Test case 1 Test case 3
Var. XANN ‘ Xtrue XANN ‘ Xtrue
T2 0,74 | -0,80 8,92 -0,80
P2 -0,32 | -0,94 -2,62 -0,94
T4 0,12 -0,63 || -41,60 | -60,00
A8 0,00 1,00 -1,00 1,00
T3 0,41 -1,31 6,49 -1,31
P3 -1,06 0,41 -2,32 0,41
D2 0,24 0,01 -1,10 0,01
N 0,93 -0,51 7,06 -0,51
Dfuel || -0,14 0,02 0,02 0,02
P4 1,38 -0,21 3,33 -0,21
T5 -1,30 | -0,34 15,52 -0,34
P5 0,13 -0,20 3,08 -0,20
P8 0,68 -0,43 2,79 -0,43
T8 -0,12 0,71 17,11 0,71

Table 3: Identification results using a least square
method

associated to the validated values )7J provides a
good overview of how the robust identification per-
forms. The advantage of using robust identification
is clearly shown by test case 3 in table 4.

Robust estimation sets criticity of rejected mea-
surements to zero. This means that they are not
used by the identification procedure. As a con-
sequence the criticity of the other measurements
changes (since trace(G) = p) and so the standard
deviation associated to each validated value. The
least square approach does not show such behavior,
and the criticity is not modified when faults occur.

Least square methods do not take into account
faulty measurements and additional tests are
mandatory to achieve fault isolation. Omne of the



Test case 1 Test case 2 Test case 3
Var. XANN ‘ Xmod ‘ Xtrue XANN Xmod Xtrue XANN Xmod Xtrue
T2 0,73 | -0,38 | -0,80 1,27 -0,07 -0,80 1,64 0,25 -0,80
P2 -0,28 | 0,12 | -0,94 -0,56 0,04 -0,94 0,58 0,28 -0,94
T4 0,20 | -0,09 | -0,63 || -58,13 | -58,91 | -60,00 || -58,04 | -58,62 | -60,00
A8 0,00 1,00 | 1,00 0,00 1,00 1,00 0,00 1,00 1,00
T3 0,39 | -1,06 | -1,31 0,78 -0,84 -1,31 -5,46 | -7,10 | -7,76
P3 -1,18 | 0,55 | 0,40 -1,51 0,19 0,40 -1,29 -0,35 0,40
D2 0,22 | -0,84 | -0,81 0,12 -0,91 -0,81 0,14 -0,97 -0,81
N 0,87 | -0,40 | -0,51 1,25 -0,26 -0,51 12,31 | 10,72 | 10,40
Dfuel || -0,14 | 0,00 | 0,00 -0,14 0,00 0,00 -0,14 0,00 0,00
P4 1,36 | -0,04 | -0,21 1,25 -0,31 -0,21 1,41 -0,75 -0,21
T5 -1,20 | 0,17 | -0,34 -0,20 0,68 -0,34 -0,17 0,96 -0,34
P5 0,22 0,01 | -0,40 0,28 -0,08 -0,40 0,26 -0,37 -0,40
P8 0,77 | -0,44 | -0,85 0,78 -0,53 -0,85 25,21 | 48,13 | 48,10
T8 -0,02 1,23 | 0,71 1,01 1,73 0,71 1,05 2,01 0,71
Table 2: Identification results
[ Var. || crit (SSE) | crit (Huber) | xtrue | correctly determined and the sensor faults are eas-
T2 0,21 0,25 -0,80 ily detected and located.
ii 8:28 8:35()) _;5%?30 S.uch a robust estimatO.r can be very usef}ﬂ in a real
AR 0.12 0.12 .00 time measurement validation process since a few
T3 012 013 131 measurements are neefied to detect a fault. OIllly
. J . one sample at a time is used, that should provide
P3 0,65 0,65 0,41 fast Its right after th isition.
ast results right after the acquisitio
D2 0,01 0,01 0,01
N 0,20 0,21 -0,51 The introduction of neural networks provides a
Dfuel 0,00 0,00 0,02 great computational speed to the identification pro-
P4 0,35 0,35 -0,21 cess since no non-linear system of equations has to
TH 0,28 0,39 -0,34 be solved, resulting in a very short computational
P5 0,27 0,27 -0,20 time for one measurement validation. Several tests
P8 0,25 0,25 -0,43 have been made to assess the gain in computational
TS 0,30 0,41 0,71 time. When using the physical model only 1 valida-

Table 4: Criticity of faulty measurements

main advantages of the robust estimator is that the
true value of the parameters, the influence of each
measurement on the result, the number of good
measurements available and the accuracy (standard
deviation) of each identified parameter are obtained
in one step.

Conclusions

It has been shown in this paper that neural net-
works are sufficiently smooth to model a jet-engine.

The robust identification method based on Huber’s
error function appears to give very good results
in the case of measurement validation and sensor
faults detection on a turbojet. The parameters are

tion per second (1 Hz) can be achieved (on an Intel
PIIT 650MHz) whereas a neural network enables
validation frequency of 500 Hz to 1000 Hz. Such a
property can be very useful for on-line validation.

The tests have shown that even though the identi-
fied parameters were not exactly the same, no loss
of fault detection efficiency was observed. There-
fore measurement validation can be achieved by a
neural network without any loss of efficiency. More-
over this procedure may be applied to any engine
even if no physical model is available.

More study are necessary to develop an on-line ro-
bust learning of the neural network together with
an on-line measurement validation that should pro-
vide an automatic procedure (since no database
would have to be stored as a preliminary step).
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